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Statement of Problem

Nonlinear Schrödinger Equation

i∂tu = ∆u + λ|u|2pu (1)

x ∈ Td , t ∈ R, p ∈ N

Consider the plane wave solution to (1):

wm(x , 0) := %e im·x

wm(x , t) = %e im·xe i(|m|
2−λ%2p)t

Assuming u(x , t) satisfies (1) and
‖%− e−im·xu(x , 0)‖Hs(Td ) < ε, what type of stability can we
expect?
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Picture
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Our Goal

Definition (Orbital Stability)

A solution x(t) is said to be orbitally stable if, given ε > 0, there
exists a δ = δ(ε) > 0 such that, for any other solution, y(t),
satisfying |x(t0)− y(t0)| < δ, then d(y(t),O(x0, t0)) < ε for
t > t0.

For any M ∈ N
There exist s0 and ε0 so that for any solution u to (1) with
‖%− e−im·xu(x , 0)‖Hs(Td ) < ε , for ε < ε0 and s > s0

inf
ϕ∈R
‖e−iϕe−im·•wm(•, t)− e−im·•u(•, t)‖Hs(Td ) < εC (M, s0, ε0)

For t < ε−M .
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First Approach

Assume m = 0

Translation of (1) by w0:

i∂tu = (∆ + (p + 1)λ%2p)u + (pλ%2(p−1))w 2
0 ū +

2p+1∑
i=2

Fi (u, ū,w0)

(2)

i∂tun = (−|n|2 + (p + 1)λ%2p)un + (pλ%2(p−1))w 2
0 ū−n + F (uk , ūk ,w0)

(3)

The linear part of (3) is a system with periodic coefficients, so
we consider Floquet’s theorem.

Wilson Sobolev Stability of Plane Wave Solutions to the NLSE



Floquet’s Theorem

Theorem (Floquet’s Theorem)

Suppose A(t) is periodic. Then the Fundamental matrix of the
linear system has the form

Π(t, t0) = P(t, t0) exp((t − t0)Q(t0))

where P(·, t0) has the same period as A(·) and P(t0, t0) = 1.

The eigenvalues of M(t0) := Π(t0 + T , t0), ρj , are known as
Floquet multipliers and

Corollary

A periodic linear system is stable if all Floquet multipliers satisfy
|ρj | ≤ 1.
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Constant coefficients and Diagonalization

With zn = e−iλ%
2ptun, the linear part of (3) is

i∂t

(
zn

z̄−n

)
= An

(
zn

z̄−n

)
We then diagonalize

i∂t

(
xn

x̄−n

)
=

(
Ωn 0
0 Ω−n

)(
xn

x̄−n

)
where

Ωn =
√
|n|2(|n|2 + 2p%2p)

assuming λ = −1.
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Duhamel Iteration Scheme

Duhamel’s Formula:

xn(t) = e iΩntxn(0) +

∫ t

0
e iΩn(t−s)F (x(s))n ds

Define the iteration scheme:{
xn(t, k + 1) = xn(t, 0) +

∫ t
0 e iΩn(t−s)F (xn(s, k)) ds

xn(t, 0) := e iΩntxn(0, 0)

This approach is similar to the 19th century approach of
expanding the solution in a perturbative series:

u(t) = u0(t) + εu1(t) + ε2u2(t) + · · ·

uk being defined recursively.

This series does not converge, so we should expect a similar
phenomenon.
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Appearance of small divisors

The first step shows us the issues that this iteration scheme
presents us:

Small Model of First Iterate

xn(t, 1) = xn(t, 0) +

∫ t

0
e iΩn(t−s)

∑
n1,n2

xn1(s, 0)xn2(s, 0) ds

= xn(t, 0) + e iΩnt
∑
n1,n2

xn1xn2

∫ t

0
e i(Ωn1 +Ωn2−Ωn)s ds

= xn(t, 0) +
∑
n1,n2

xn1xn2

e i(Ωn1 +Ωn2 )t − e iΩnt

i(Ωn1 + Ωn2 − Ωn)
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Appearance of small divisors
How do we control the small divisors?

Recall that

Ωn =
√
|n|2(|n|2 + 2p%2p)

and note the pattern

∂%Ωn =
C (n, %)√
|n|2 + 2p%2p

= Ωn
C̃ (n, %)

|n|2 + 2p%2p

∂2
%Ωn =

−C 2(n, %)

(|n|2 + 2p%2p)3/2
= Ωn

−C̃ 2(n, %)

(|n|2 + 2p%2p)2

We can conclude that

Ωn1 + Ωn2 − Ωn = ∂%(Ωn1 + Ωn2 − Ωn) = ∂2
%(Ωn1 + Ωn2 − Ωn) = 0

does not occur on compact set of %.
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Appearance of small divisors

Small Model of Second Iterate

xn(t, 2)

= xn(t, 0) +

∫ t

0
e iΩn(t−s)

∑
n1,n2

xn1(s, 1)xn2(s, 1) ds

= xn(t, 1)

+ e iΩnt
∑

n1,k1,k2

xn1xk1xk2

∫ t
0 e i(Ωn1 +Ωk1

+Ωk2
−Ωn)s − e i(Ωn1 +Ωn2−Ωn)s ds

i(Ωk1 + Ωk2 − Ωn2)

+ e iΩnt
∑

j1,j2,k1,k2

xj1xj2xk1xk2

∫ t
0 e i(Ωj1

+Ωj2
+Ωk1

+Ωk2
−Ωn)s − ... ds

−(Ωj1 + Ωj2 − Ωn1)(Ωk1 + Ωk2 − Ωn2)

+ ...
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Issues

Convergence

Resonances

Type of stability

Problem at zero mode
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A Reduction on the Hamiltonian

H :=
∑
k∈Zd

|k|2|uk |2 +
1

p + 1

∑
∑p+1

i=1 ki=
∑p+1

i=1 hi

uk1 . . . ukp+1 ūh1 . . . ūhp+1 .

(4)

Let L := ‖u(0)‖2
L2 , define the symplectic reduction of u0:

{uk , ūk}k∈Zd → (L, ν0, {vk , v̄k}k∈Zd\{0}),

u0 = e iν0

√
L−

∑
k∈Zd

|vk |2, uk = vke iν0 , ∀k ∈ Zd \ {0}.
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A Reduction on the Hamiltonian

H =
1

p + 1
Lp+1 +

∑
k∈Zd\{0}

(|k|2 + pLp)|vk |2 + Lp
(p

2
(vkv−k + v̄k v̄−k )

)

+ Lp−
1
2

∑
k1,k2∈Zd\{0}

k1+k2 6=0

(p(p − 1)

6
(vk1

vk2
v−k1−k2

+ c.c) +
(p + 1)p

2
(vk1

vk2
v̄k1+k2

+ c.c.)
)

+
(
− pLp−1

∑
k∈Zd\{0}

|vk |2
)( ∑

k∈Zd\{0}

(p + 1)|vk |2 +
p

2
(vkv−k + v̄k v̄−k )

)
+

p

2
Lp−1

( ∑
k∈Zd\{0}

|vk |2
)2

+ Lp−1
∑

ki∈Zd\{0}
k1+k2 6=k3+k4

(p2(p + 1)

4
(vk1

vk2
v̄k3

v̄k4
+ c.c) +

(p + 1)p(p − 1)

6
(vk1

vk2
vk3

v̄k4
+ c.c.)

)

+ Lp−1
(p(p − 1)(p − 2)

12

∑
ki∈Zd\{0}

k1+k2 6=k3+k4

(vk1
vk2

vk3
vk4

+ c.c)
)

+ h.o.t.
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A Reduction on the Hamiltonian
Quadratic part

We now diagonalize the quadratic part of the Hamiltonian:

H0 =
∑

k∈Zd\{0}

(k2 + Lpp)|vk |2 + Lp p

2
(vkv−k + v̄k v̄−k) (5)

which gives

H0 =
∑
k∈Zd

Ωk

2
(|xk |2 + |x−k |2) (6)

with Ωk =
√
|k |2(|k |2 + 2pLp).

It is convenient to group together the modes having the same
frequency i.e. to denote

ωq :=
√

q2(q2 + 2pLp), q ≥ 1. (7)
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A fork in the road

KAM Theory

Existence of quasi periodic after a small perturbation that
exists for all time

Birkhoff Normal Forms

Orbital ε-stability of the periodic solution up to time ε−M .
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Birkhoff Normal Form Theorem in Finite Dimension

Definition (Normal Form)

Let H = H0 + P where P ∈ C∞(R2N ,R), which is at least cubic
such that P is a perturbation of H0. We say that P is in normal
form with respect to H0 if it Poisson commutes with H0:

{P,H0} = 0

Definition (Nonresonance)

Let r ∈ N. A frequency vector, ω ∈ Rn, is nonresonant up to
order r if

k · ω :=
n∑

j=1

kjωj 6= 0 for all k ∈ Zn with 0 < |k| ≤ r
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Birkhoff Normal Form Theorem in Finite Dimension

Theorem (Moser ’68)

Let H = H0 + P where

H0 =
∑N

j=1 ωj
p2
j +q2

j

2

P ∈ C∞(R2N ,R) having a zero of order 3 at the origin

Fix M ≥ 3 an integer. There exists τ : U 3 (q′, p′) 7→ (q, p) ∈ V a
real analytic canonical transformation from a nbhd of the origin to
a nbhd of the origin which puts H in normal form up to order M
i.e.

H ◦ τ = H0 + Z + R

with

1 Z is a polynomial of order r and is in normal form

2 R ∈ C∞(R2N ,R) and R(z , z̄) = O(‖(q, p)‖M+1)

3 τ is close to the identity: τ(q, p) = (q, p) + O(‖(q, p)‖2)
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Birkhoff Normal Form Theorem in Finite Dimension

Corollary

Assume ω is nonresonant. For each M ≥ 3 there exists ε0 > 0 and
C > 0 such that if ‖(q0, p0)‖ = ε < ε0 the solution (q(t), p(t)) of
the Hamiltonian system associated to H which takes value (q0, p0)
at t = 0 satisfies

‖(q(t), p(t)‖ ≤ 2ε for |t| ≤ c

εM−1
.
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Normal Form: Formal Argument

Consider the ODE

i∂txn = ωnxn +
∑
k≥2

(
fk(x)

)
n

With

Auxiliary Hamiltonian: χ(x)

Xχ the corresponding vector field

We note that for any vector field Y , its transformed vector field
under the time 1 flow generated by Xχ is

eadXχY =
∞∑
k=0

1

k!
adkXχY (8)

where adXY := [Y ,X ].
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Iterative Step

Let χ be degree K0 + 1

Let Φχ(x) be the time-1 flow map associated with the
Hamiltonian vector field Xχ.

Consider the change of variables y = Φχ(x)

Using the identity (8), one obtains

i∂tyn = ωnyn +

K0−1∑
k=2

(
fk(y)

)
n

+ ([Xχ, ωy ](y))n + (fK0(y))n + h.o.t.
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Homological Equation

Plan: choose χ and another vector-valued homogeneous
polynomial of degree K0, RK0 , in such a way that we can
decompose fK0 as follows

fK0(y) = RK0(y)− [Xχ, ωy ](y) (9)

We can find χ so that RK0 is in the kernel of the following
function

adω(X ) := [X , ωy ].

Any Y ∈ ker adω is referred to as ”normal” or ”resonant”.
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Appearance of small divisors

Condition for a monomial, yαȳβ∂ym , (α, β ∈ N∞) to satisfy
yαȳβ∂ym ∈ ker adω:

adω(yαȳβ∂ym) = [(α− β) · ω − ωm]yαȳβ∂ym

For individual terms, (9) becomes

Rα,β,m − (ω · (α− β)− ωm)Xα,β,m = fα,β,m

Definition of Xχ and RK0 :

Rα,β,m := fα,β,m
Xα,β,m := 0

when ω · (α− β)− ωm = 0

Xα,β,m :=
−fα,β,m

(ω · (α− β)− ωm)
when ω · (α− β)− ωm 6= 0
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Appearance of small divisors

In finite dimension,

inf{|ω · (α− β)− ωm|
∣∣ω · (α− β)− ωm 6= 0} > 0

Leads to bound on change-of-variables
map(symplectomorphism).

Not necessarily true in infinite dimensions.
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Nonresonance Condition

Definition (Nonresonance Condition)

There exists γ = γM > 0 and τ = τM > 0 such that for any N
large enough, one has∣∣∣∣∣∣

∑
q≥1

λqωq

∣∣∣∣∣∣ ≥ γ

Nτ
for ‖λ‖1 ≤ M,

∑
q>N

|λq| ≤ 2 (10)

where λ ∈ Z∞ \ {0}.

The following generalization of the “non-resonance” result in
Bambusi-Grebert holds.

Theorem (Bambusi-Grebert 2006)

For any L0 > 0, there exists a set J ⊂ (0, L0) of full measure such
that if L ∈ J then for any M > 0 the Nonresonance Condition
holds.
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Theory of Bambusi-Grebert
Functional Setting

Definition

For x = {xn}n∈Zd , define the standard Sobolev norm as

‖x‖s :=

√∑
n∈Zd

|xn|2〈n〉2s

Define Hs as

Hs := {x = {xn}n∈Zd | ‖x‖s <∞}
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Theory of Bambusi-Grebert
Functional Setting

Let

X̃ (z) :=
∑
‖α‖`1 =`

|Xα|zα

Definition (Tame Modulus)

Let X be a vector-valued homogeneous polynomial of degree `. X
is said to have s-tame modulus if there exists C > 0 such that∥∥∥X̃ (z(1), ..., z(`))

∥∥∥
s

≤ C
1

`

∑̀
k=1

‖z(1)‖ d+1
2
· · · ‖z(k−1)‖ d+1

2
‖z(k)‖s‖z(k+1)‖ d+1

2
· · · ‖z(`)‖ d+1

2

for all z(1), ..., z(`) ∈ Hs . The infimum over all C for which the
inequality holds is called the tame s-norm and is denoted |X |s .
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Normal Form Theorem

Theorem (Bambusi-Grebert 2006)

Consider the equation

i ẋ = ωx +
∑
k≥2

fk(x). (11)

and assume the nonresonance condition (10). For any M ∈ N,
there exists s0 = s0(M, τ) such that for any s ≥ s0 there exists
rs > 0 such that for r < rs , there exists an analytic canonical
change of variables

y = Φ(M)(x)

Φ(M) : Bs(r)→ Bs(3r)

which puts (11) into the normal form

i ẏ = ωy +R(M)(y) + X (M)(y). (12)
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Normal Form Theorem continued

Theorem (Theorem cont.)

Moreover there exists a constant C = Cs such that:

sup
x∈Bs(r)

‖x − Φ(M)(x)‖s ≤ Cr 2

R(M) is at most of degree M + 2, is resonant, and has tame
modulus

the following bound holds

‖X (M)‖s,r ≤ CrM+ 3
2
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Normal Form Theorem Ideas

In the homological equation

fK0(y) = RK0(y)− [Xχ, ωy ](y)

let fK0 = f̃ + f ∗

f ∗ consists of terms, fα,β,myαȳβ∂ym where∑
|ni |>N

|αni |+
∑
|mi |>N

|βmi |+ 1{|n|>N}(m) ≤ 2

f̃ is small when ‖y‖s is small due to Tame Modulus.

We instead solve

f ∗(y) = RK0(y)− [Xχ, ωy ](y)
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Main Theorem: Statement from FGL ’13

Theorem (Faou, Gauckler, Lubich 2013)

Let ρ0 > 0 be such that 1− 2λρ2
0 > 0, and let M > 1 be fixed

arbitrarily. There exists s0 > 0, C ≥ 1 and a set of full measure P
in the interval (0, ρ0] such that for every s ≥ s0 and every ρ ∈ P,
there exists ε0 such that for every m ∈ Zd the following holds: if
the initial data u(•, 0) are such that

‖u(•, 0)‖L2 = ρ and ‖e−im·•u(•, 0)− um(0)‖Hs = ε ≤ ε0

then the solution of (1) (with p = 1) with these initial data
satisfies

‖e−im·•u(•, t)− um(t)‖Hs ≤ Cε for t ≤ ε−M
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Structure of the cubic case

Let

Hc =

∫
T

(|∂xu|2 + |u|4) dx

Theorem (Kappeler, Grebert 2014)

There exists a bi-analytic diffeomorphism Ω : H1 → H1 such that
Ω introduces Birkhoff coordinates for NLS on H1. That is, on H1

the transformed NLS Hamiltonian Hc ◦ Ω−1 is a real-analytic
function of the actions

In =
|xn|2

2

for n ∈ Z. Furthermore, d0Ω is the Fourier transform.
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Main Theorem: Statement

Theorem (W. 2014)

Let L0 > 0 be such that 1− 2pλLp
0 > 0, and let M > 1 be fixed

arbitrarily. There exists s0 > 0, C ≥ 1 and a set of full measure P
in the interval (0, L0] such that for every s ≥ s0 and every L ∈ P,
there exists ε0 such that for every m ∈ Zd the following holds: if
the initial data u(•, 0) are such that

‖u(•, 0)‖2
L2 = L and ‖e−im·•u(•, 0)− um(0)‖Hs = ε ≤ ε0

then the solution of (1) with these initial data satisfies

‖e−im·•u(•, t)− um(t)‖Hs ≤ Cε for t ≤ ε−M
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Characterization of R(M)

Proposition

The truncation of (12),

i ẏ = ωy +R(M)(y)

can be decoupled in the following way:

i∂t

 yn1

· · ·
ynk

 =Mq

 yn1

· · ·
ynk

 (13)

where q ≥ 1, {n1, . . . , nk} := {n ∈ Zd : |n| = q},
Mq =Mq (ω, {yj}) is a self-adjoint matrix for all t.
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Characterization of R(M)

The form of the resonant terms depends entirely on two properties
of the Hamiltonian:

The Hamiltonian obeys the Conservation of Momentum law:

For any monomial, fα,β,myαȳβ∂ym , in the vector field, the
indices satisfy ∑

αkk −
∑

βj j −m = 0

{ωq}q<N is a linearly independent set
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Resonant Dynamics

Proposition

Suppose y ∈ Hs satisfies (13), then

∂t‖y‖2
s = ∂t

∑
q≥1

∑
|ni |=q

|yni |
2

 〈q〉2s = 0
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Further Questions

Infinite time result?

Feasibility of the Floquet/Duhamel iteration

KAM result
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KAM Result

Obstacles

One parameter family of frequencies
Repeated frequencies

May be able to overcome this: Bambusi, Berti, Magistrelli
Degenerate KAM theory for PDEs
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