Sobolev Stability of Plane Wave Solutions to the NLSE

Bobby Wilson (University of Chicago)

UIUC, September 2014

Wilson Sobolev Stability of Plane Wave Solutions to the NLSE

向下 イヨト イヨト

Statement of Problem

• Nonlinear Schrödinger Equation

$$i\partial_t u = \Delta u + \lambda |u|^{2p} u$$

$$x \in \mathbb{T}^d, \quad t \in \mathbb{R}, \quad p \in \mathbb{N}$$
(1)

・ロン ・回と ・ヨン ・ヨン

Statement of Problem

• Nonlinear Schrödinger Equation

$$i\partial_t u = \Delta u + \lambda |u|^{2p} u$$

$$x \in \mathbb{T}^d, \quad t \in \mathbb{R}, \quad p \in \mathbb{N}$$
(1)

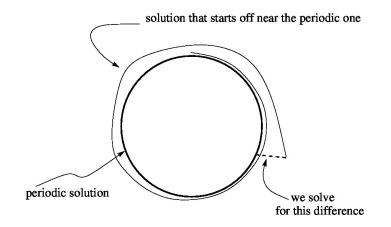
• Consider the plane wave solution to (1):

$$w_m(x,0) := \varrho e^{im \cdot x}$$

$$w_m(x,t) = \varrho e^{im \cdot x} e^{i(|m|^2 - \lambda \varrho^{2p})t}$$

• Assuming u(x, t) satisfies (1) and $\|\varrho - e^{-im \cdot x}u(x, 0)\|_{H^s(\mathbb{T}^d)} < \varepsilon$, what type of stability can we expect?

・ 回 と ・ ヨ と ・ ヨ と



Our Goal

Definition (Orbital Stability)

A solution x(t) is said to be orbitally stable if, given $\varepsilon > 0$, there exists a $\delta = \delta(\epsilon) > 0$ such that, for any other solution, y(t), satisfying $|x(t_0) - y(t_0)| < \delta$, then $d(y(t), O(x_0, t_0)) < \epsilon$ for $t > t_0$.

- For any $M \in \mathbb{N}$
- There exist s_0 and ε_0 so that for any solution u to (1) with $\|\varrho e^{-im \cdot x} u(x, 0)\|_{H^s(\mathbb{T}^d)} < \varepsilon$, for $\varepsilon < \varepsilon_0$ and $s > s_0$

$$\inf_{\varphi \in \mathbb{R}} \| e^{-i\varphi} e^{-im \cdot \bullet} w_m(\bullet, t) - e^{-im \cdot \bullet} u(\bullet, t) \|_{H^s(\mathbb{T}^d)} < \varepsilon C(M, s_0, \varepsilon_0)$$

• For $t < \varepsilon^{-M}$.

(4月) (4日) (4日) 日

- Assume m = 0
- Translation of (1) by w_0 :

$$i\partial_t u = (\Delta + (p+1)\lambda\varrho^{2p})u + (p\lambda\varrho^{2(p-1)})w_0^2\bar{u} + \sum_{i=2}^{2p+1} F_i(u,\bar{u},w_0)$$
(2)

$$i\partial_t u_n = (-|n|^2 + (p+1)\lambda \varrho^{2p})u_n + (p\lambda \varrho^{2(p-1)})w_0^2 \bar{u}_{-n} + F(u_k, \bar{u}_k, w_0)$$
(3)

• The linear part of (3) is a system with periodic coefficients, so we consider Floquet's theorem.

・ロン ・回 と ・ 回 と ・ 回 と

3

Theorem (Floquet's Theorem)

Suppose A(t) is periodic. Then the Fundamental matrix of the linear system has the form

$$\Pi(t, t_0) = P(t, t_0) \exp((t - t_0)Q(t_0))$$

where $P(\cdot, t_0)$ has the same period as $A(\cdot)$ and $P(t_0, t_0) = \mathbb{1}$.

The eigenvalues of $M(t_0) := \Pi(t_0 + T, t_0)$, ρ_j , are known as Floquet multipliers and

Corollary

A periodic linear system is stable if all Floquet multipliers satisfy $|\rho_j| \leq 1$.

・ロン ・回と ・ヨン ・ヨン

Constant coefficients and Diagonalization

With $z_n = e^{-i\lambda \varrho^{2p}t}u_n$, the linear part of (3) is

$$i\partial_t \left(\begin{array}{c} z_n \\ \bar{z}_{-n} \end{array}\right) = A_n \left(\begin{array}{c} z_n \\ \bar{z}_{-n} \end{array}\right)$$

We then diagonalize

$$i\partial_t \left(\begin{array}{c} x_n \\ \bar{x}_{-n} \end{array}\right) = \left(\begin{array}{c} \Omega_n & 0 \\ 0 & \Omega_{-n} \end{array}\right) \left(\begin{array}{c} x_n \\ \bar{x}_{-n} \end{array}\right)$$

where

$$\Omega_n = \sqrt{|n|^2(|n|^2 + 2p\varrho^{2p})}$$

assuming $\lambda = -1$.

▲圖▶ ★ 国▶ ★ 国▶

Duhamel Iteration Scheme

Duhamel's Formula:

$$x_n(t) = e^{i\Omega_n t} x_n(0) + \int_0^t e^{i\Omega_n(t-s)} F(x(s))_n \, ds$$

Define the iteration scheme:

$$\begin{cases} x_n(t, k+1) = x_n(t, 0) + \int_0^t e^{i\Omega_n(t-s)} F(x_n(s, k)) \, ds \\ x_n(t, 0) := e^{i\Omega_n t} x_n(0, 0) \end{cases}$$

回 と くほ と くほ とう

Duhamel Iteration Scheme

Duhamel's Formula:

$$x_n(t) = e^{i\Omega_n t} x_n(0) + \int_0^t e^{i\Omega_n(t-s)} F(x(s))_n \, ds$$

Define the iteration scheme:

$$\begin{cases} x_n(t, k+1) = x_n(t, 0) + \int_0^t e^{i\Omega_n(t-s)} F(x_n(s, k)) \, ds \\ x_n(t, 0) := e^{i\Omega_n t} x_n(0, 0) \end{cases}$$

• This approach is similar to the 19th century approach of expanding the solution in a perturbative series:

$$u(t) = u_0(t) + \varepsilon u_1(t) + \varepsilon^2 u_2(t) + \cdots$$

 u_k being defined recursively.

• This series does not converge, so we should expect a similar phenomenon.

The first step shows us the issues that this iteration scheme presents us:

Small Model of First Iterate

$$\begin{aligned} x_n(t,1) &= x_n(t,0) + \int_0^t e^{i\Omega_n(t-s)} \sum_{n_1,n_2} x_{n_1}(s,0) x_{n_2}(s,0) \, ds \\ &= x_n(t,0) + e^{i\Omega_n t} \sum_{n_1,n_2} x_{n_1} x_{n_2} \int_0^t e^{i(\Omega_{n_1} + \Omega_{n_2} - \Omega_n)s} \, ds \\ &= x_n(t,0) + \sum_{n_1,n_2} x_{n_1} x_{n_2} \frac{e^{i(\Omega_{n_1} + \Omega_{n_2})t} - e^{i\Omega_n t}}{i(\Omega_{n_1} + \Omega_{n_2} - \Omega_n)} \end{aligned}$$

・ロト ・回ト ・ヨト ・ヨト

2

Appearance of small divisors How do we control the small divisors?

Recall that

$$\Omega_n = \sqrt{|n|^2(|n|^2 + 2p\varrho^{2p})}$$

and note the pattern

$$\partial_{\varrho}\Omega_{n} = \frac{C(n,\varrho)}{\sqrt{|n|^{2} + 2p\varrho^{2p}}} = \Omega_{n}\frac{\tilde{C}(n,\varrho)}{|n|^{2} + 2p\varrho^{2p}}$$
$$\partial_{\varrho}^{2}\Omega_{n} = \frac{-C^{2}(n,\varrho)}{(|n|^{2} + 2p\varrho^{2p})^{3/2}} = \Omega_{n}\frac{-\tilde{C}^{2}(n,\varrho)}{(|n|^{2} + 2p\varrho^{2p})^{2}}$$

We can conclude that

$$\Omega_{n_1} + \Omega_{n_2} - \Omega_n = \partial_{\varrho}(\Omega_{n_1} + \Omega_{n_2} - \Omega_n) = \partial_{\varrho}^2(\Omega_{n_1} + \Omega_{n_2} - \Omega_n) = 0$$

does not occur on compact set of ρ .

向下 イヨト イヨト

Appearance of small divisors

Small Model of Second Iterate

 $x_n(t,2)$ $= x_n(t,0) + \int_0^t e^{i\Omega_n(t-s)} \sum x_{n_1}(s,1) x_{n_2}(s,1) \, ds$ $= x_n(t, 1)$ $+ e^{i\Omega_n t} \sum_{k=1}^{\infty} \frac{x_{n_1} x_{k_1} x_{k_2} \int_0^t e^{i(\Omega_{n_1} + \Omega_{k_1} + \Omega_{k_2} - \Omega_n)s} - e^{i(\Omega_{n_1} + \Omega_{n_2} - \Omega_n)s} ds}{i(\Omega_{k_1} + \Omega_{k_2} - \Omega_{n_2})}$ n_1, k_1, k_2 $+ e^{i\Omega_n t} \sum_{j_1, j_2, k_1, k_2} \frac{x_{j_1} x_{j_2} x_{k_1} x_{k_2} \int_0^t e^{i(\Omega_{j_1} + \Omega_{j_2} + \Omega_{k_1} + \Omega_{k_2} - \Omega_n)s} - \dots ds}{-(\Omega_{j_1} + \Omega_{j_2} - \Omega_{n_1})(\Omega_{k_1} + \Omega_{k_2} - \Omega_{n_2})}$ + ...

周下 イヨト イヨト 二日

- Convergence
- Resonances
- Type of stability
 - Problem at zero mode

・ 回 と ・ ヨ と ・ ヨ と

A Reduction on the Hamiltonian

$$H := \sum_{k \in \mathbb{Z}^d} |k|^2 |u_k|^2 + \frac{1}{p+1} \sum_{\sum_{i=1}^{p+1} k_i = \sum_{i=1}^{p+1} h_i} u_{k_1} \dots u_{k_{p+1}} \bar{u}_{h_1} \dots \bar{u}_{h_{p+1}}.$$
(4)

Let $L := ||u(0)||_{L^2}^2$, define the symplectic reduction of u_0 :

$$\{u_k, \overline{u}_k\}_{k \in \mathbb{Z}^d} \to (L, \nu_0, \{v_k, \overline{v}_k\}_{k \in \mathbb{Z}^d \setminus \{0\}}),$$

$$u_0 = e^{i\nu_0} \sqrt{L - \sum_{k \in \mathbb{Z}^d} |v_k|^2}, \quad u_k = v_k e^{i\nu_0}, \quad \forall k \in \mathbb{Z}^d \setminus \{0\}.$$

回 と く ヨ と く ヨ と

A Reduction on the Hamiltonian

$$\begin{split} H &= \frac{1}{p+1} L^{p+1} + \sum_{k \in \mathbb{Z}^d \setminus \{0\}} (|k|^2 + pL^p) |v_k|^2 + L^p \left(\frac{p}{2} (v_k v_{-k} + \bar{v}_k \bar{v}_{-k})\right) \\ &+ L^{p-\frac{1}{2}} \sum_{\substack{k_1, k_2 \in \mathbb{Z}^d \setminus \{0\} \\ k_1 + k_2 \neq 0}} \left(\frac{p(p-1)}{6} (v_{k_1} v_{k_2} v_{-k_1 - k_2} + c.c) + \frac{(p+1)p}{2} (v_{k_1} v_{k_2} \bar{v}_{k_1 + k_2} + c.c.) \right) \\ &+ \left(- pL^{p-1} \sum_{\substack{k \in \mathbb{Z}^d \setminus \{0\} \\ k_1 + k_2 \neq k_3 + k_4}} |v_k|^2 \right) \left(\sum_{\substack{k \in \mathbb{Z}^d \setminus \{0\} \\ k_1 + k_2 \neq k_3 + k_4}} (p^2(p+1) |v_k|^2 + \frac{p}{2} (v_k v_{-k} + \bar{v}_k \bar{v}_{-k}) \right) \\ &+ L^{p-1} \sum_{\substack{k_i \in \mathbb{Z}^d \setminus \{0\} \\ k_1 + k_2 \neq k_3 + k_4}} \left(\frac{p^2(p+1)}{4} (v_{k_1} v_{k_2} \bar{v}_{k_3} \bar{v}_{k_4} + c.c) + \frac{(p+1)p(p-1)}{6} (v_{k_1} v_{k_2} v_{k_3} \bar{v}_{k_4} + c.c.) \right) \\ &+ L^{p-1} \left(\frac{p(p-1)(p-2)}{12} \sum_{\substack{k_i \in \mathbb{Z}^d \setminus \{0\} \\ k_1 + k_2 \neq k_3 + k_4}} (v_{k_1} v_{k_2} v_{k_3} v_{k_4} + c.c) \right) + h.o.t. \end{split}$$

回 と く ヨ と く ヨ と

A Reduction on the Hamiltonian Quadratic part

We now diagonalize the quadratic part of the Hamiltonian:

$$H_0 = \sum_{k \in \mathbb{Z}^d \setminus \{0\}} (k^2 + L^p p) |v_k|^2 + L^p \frac{p}{2} (v_k v_{-k} + \bar{v}_k \bar{v}_{-k})$$
(5)

which gives

$$H_0 = \sum_{k \in \mathbb{Z}^d} \frac{\Omega_k}{2} (|x_k|^2 + |x_{-k}|^2)$$
(6)

with $\Omega_k = \sqrt{|k|^2 (|k|^2 + 2pL^p)}$.

• It is convenient to group together the modes having the same frequency i.e. to denote

$$\omega_q := \sqrt{q^2(q^2 + 2pL^p)}, \qquad q \ge 1. \tag{7}$$

向下 イヨト イヨト

- KAM Theory
 - Existence of quasi periodic after a small perturbation that exists for all time
- Birkhoff Normal Forms
 - Orbital ε -stability of the periodic solution up to time ε^{-M} .

・ 回 と ・ ヨ と ・ ヨ と

3

Definition (Normal Form)

Let $H = H_0 + P$ where $P \in C^{\infty}(\mathbb{R}^{2N}, \mathbb{R})$, which is at least cubic such that P is a perturbation of H_0 . We say that P is in **normal** form with respect to H_0 if it Poisson commutes with H_0 :

 $\{P,H_0\}=0$

Definition (Nonresonance)

Let $r \in \mathbb{N}$. A frequency vector, $\omega \in \mathbb{R}^n$, is nonresonant up to order **r** if

$$k \cdot \omega := \sum_{j=1}^n k_j \omega_j \neq 0$$
 for all $k \in \mathbb{Z}^n$ with $0 < |k| \le r$

・ 同 ト ・ ヨ ト ・ ヨ ト

Birkhoff Normal Form Theorem in Finite Dimension

Theorem (Moser '68)

Let $H = H_0 + P$ where

•
$$H_0 = \sum_{j=1}^N \omega_j \frac{p_j^2 + q_j^2}{2}$$

• $P \in C^{\infty}(\mathbb{R}^{2N},\mathbb{R})$ having a zero of order 3 at the origin

Fix $M \geq 3$ an integer. There exists $\tau : \mathcal{U} \ni (q', p') \mapsto (q, p) \in \mathcal{V}$ a real analytic canonical transformation from a nbhd of the origin to a nbhd of the origin which puts H in normal form up to order M i.e.

$$H \circ \tau = H_0 + Z + R$$

with

I Z is a polynomial of order r and is in normal form **2** $R \in C^{\infty}(\mathbb{R}^{2N}, \mathbb{R})$ and $R(z, \overline{z}) = O(||(q, p)||^{M+1})$ **3** τ is close to the identity: $\tau(q, p) = (q, p) + O(||(q, p)||^2)$

Corollary

Assume ω is nonresonant. For each $M \ge 3$ there exists $\varepsilon_0 > 0$ and C > 0 such that if $||(q_0, p_0)|| = \varepsilon < \varepsilon_0$ the solution (q(t), p(t)) of the Hamiltonian system associated to H which takes value (q_0, p_0) at t = 0 satisfies

$$\|(q(t),p(t)\|\leq 2arepsilon ext{ for }|t|\leq rac{c}{arepsilon^{M-1}}.$$

Consider the ODE

$$i\partial_t x_n = \omega_n x_n + \sum_{k\geq 2} (f_k(x))_n$$

With

- Auxiliary Hamiltonian: $\chi(x)$
- X_{χ} the corresponding vector field

We note that for any vector field Y, its transformed vector field under the time 1 flow generated by X_{χ} is

$$e^{\operatorname{ad}_{X_{\chi}}}Y = \sum_{k=0}^{\infty} \frac{1}{k!} \operatorname{ad}_{X_{\chi}}^{k}Y$$
(8)

where $\operatorname{ad}_X Y := [Y, X]$.

伺下 イヨト イヨト

- Let χ be degree $K_0 + 1$
- Let Φ_χ(x) be the time-1 flow map associated with the Hamiltonian vector field X_χ.
- Consider the change of variables $y = \Phi_{\chi}(x)$
- Using the identity (8), one obtains

$$i\partial_t y_n = \omega_n y_n + \sum_{k=2}^{K_0-1} (f_k(y))_n + ([X_{\chi}, \omega y](y))_n + (f_{K_0}(y))_n + h.o.t.$$

・日本 ・ モン・ ・ モン

Plan: choose χ and another vector-valued homogeneous polynomial of degree K_0 , R_{K_0} , in such a way that we can decompose f_{K_0} as follows

$$f_{K_0}(y) = R_{K_0}(y) - [X_{\chi}, \omega y](y)$$
 (9)

• We can find χ so that $R_{{\cal K}_0}$ is in the kernel of the following function

$$\mathrm{ad}_{\omega}(X) := [X, \omega y].$$

• Any $Y \in \ker ad_{\omega}$ is referred to as "normal" or "resonant".

・ 同 ト ・ ヨ ト ・ ヨ ト

Appearance of small divisors

• Condition for a monomial, $y^{\alpha} \bar{y}^{\beta} \partial_{y_m}$, $(\alpha, \beta \in \mathbb{N}^{\infty})$ to satisfy $y^{\alpha} \bar{y}^{\beta} \partial_{y_m} \in \ker \mathrm{ad}_{\omega}$:

$$\mathrm{ad}_{\omega}(y^{\alpha}\bar{y}^{\beta}\partial_{y_{m}}) = [(\alpha - \beta) \cdot \omega - \omega_{m}]y^{\alpha}\bar{y}^{\beta}\partial_{y_{m}}$$

• For individual terms, (9) becomes

$$R_{\alpha,\beta,m} - (\omega \cdot (\alpha - \beta) - \omega_m) X_{\alpha,\beta,m} = f_{\alpha,\beta,m}$$

・ 回 と ・ ヨ と ・ ヨ と

Appearance of small divisors

• Condition for a monomial, $y^{\alpha} \bar{y}^{\beta} \partial_{y_m}$, $(\alpha, \beta \in \mathbb{N}^{\infty})$ to satisfy $y^{\alpha} \bar{y}^{\beta} \partial_{y_m} \in \ker \mathrm{ad}_{\omega}$:

$$\mathrm{ad}_{\omega}(y^{\alpha}\bar{y}^{\beta}\partial_{y_{m}}) = [(\alpha - \beta) \cdot \omega - \omega_{m}]y^{\alpha}\bar{y}^{\beta}\partial_{y_{m}}$$

• For individual terms, (9) becomes

$$R_{\alpha,\beta,m} - (\omega \cdot (\alpha - \beta) - \omega_m) X_{\alpha,\beta,m} = f_{\alpha,\beta,m}$$

• Definition of X_{χ} and R_{K_0} :

$$R_{\alpha,\beta,m} := f_{\alpha,\beta,m} \quad \text{when} \quad \omega \cdot (\alpha - \beta) - \omega_m = 0$$
$$X_{\alpha,\beta,m} := 0 \quad X_{\alpha,\beta,m} := \frac{-f_{\alpha,\beta,m}}{(\omega \cdot (\alpha - \beta) - \omega_m)} \quad \text{when} \quad \omega \cdot (\alpha - \beta) - \omega_m \neq 0$$

・ 同 ト ・ ヨ ト ・ ヨ ト

In finite dimension,

 $\inf\{|\omega \cdot (\alpha - \beta) - \omega_m| \mid \omega \cdot (\alpha - \beta) - \omega_m \neq 0\} > 0$

- Leads to bound on change-of-variables map(symplectomorphism).
- Not necessarily true in infinite dimensions.

・ 同 ト ・ ヨ ト ・ ヨ ト

Nonresonance Condition

Definition (Nonresonance Condition)

There exists $\gamma = \gamma_M > 0$ and $\tau = \tau_M > 0$ such that for any N large enough, one has

$$\left|\sum_{q\geq 1}\lambda_{q}\omega_{q}\right|\geq \frac{\gamma}{N^{\tau}} \qquad \text{for } \|\lambda\|_{1}\leq M, \quad \sum_{q>N}|\lambda_{q}|\leq 2 \qquad (10)$$

where $\lambda\in\mathbb{Z}^{\infty}\setminus\{0\}.$

・ 回 ト ・ ヨ ト ・ ヨ ト

Nonresonance Condition

Definition (Nonresonance Condition)

There exists $\gamma = \gamma_M > 0$ and $\tau = \tau_M > 0$ such that for any N large enough, one has

$$\left|\sum_{q\geq 1}\lambda_{q}\omega_{q}\right|\geq \frac{\gamma}{N^{\tau}} \qquad \text{for } \|\lambda\|_{1}\leq M, \quad \sum_{q>N}|\lambda_{q}|\leq 2 \qquad (10)$$

where $\lambda \in \mathbb{Z}^{\infty} \setminus \{0\}$.

The following generalization of the "non-resonance" result in Bambusi-Grebert holds.

Theorem (Bambusi-Grebert 2006)

For any $L_0 > 0$, there exists a set $J \subset (0, L_0)$ of full measure such that if $L \in J$ then for any M > 0 the Nonresonance Condition holds.

Definition

For $x = \{x_n\}_{n \in \mathbb{Z}^d}$, define the standard Sobolev norm as

$$\|x\|_{s} := \sqrt{\sum_{n \in \mathbb{Z}^d} |x_n|^2 \langle n \rangle^{2s}}$$

Define H^s as

$$H^{s} := \{x = \{x_{n}\}_{n \in \mathbb{Z}^{d}} \mid ||x||_{s} < \infty\}$$

< 口 > < 回 > < 回 > < 回 > < 回 > <

Theory of Bambusi-Grebert Functional Setting

Let

$$ilde{X}(z):=\sum_{\|lpha\|_{\ell_1}=\ell}|X_lpha|z^lpha$$

Definition (Tame Modulus)

Let X be a vector-valued homogeneous polynomial of degree ℓ . X is said to have *s*-tame modulus if there exists C > 0 such that

$$\begin{split} & \left\| \tilde{X}(z^{(1)},...,z^{(\ell)}) \right\|_{s} \\ & \leq C \frac{1}{\ell} \sum_{k=1}^{\ell} \| z^{(1)} \|_{\frac{d+1}{2}} \cdots \| z^{(k-1)} \|_{\frac{d+1}{2}} \| z^{(k)} \|_{s} \| z^{(k+1)} \|_{\frac{d+1}{2}} \cdots \| z^{(\ell)} \|_{\frac{d+1}{2}} \end{split}$$

for all $z^{(1)}, ..., z^{(\ell)} \in H^s$. The infimum over all C for which the inequality holds is called the tame s-norm and is denoted $|X|_s$.

Normal Form Theorem

Theorem (Bambusi-Grebert 2006)

Consider the equation

$$i\dot{x} = \omega x + \sum_{k \ge 2} f_k(x). \tag{11}$$

and assume the nonresonance condition (10). For any $M \in \mathbb{N}$, there exists $s_0 = s_0(M, \tau)$ such that for any $s \ge s_0$ there exists $r_s > 0$ such that for $r < r_s$, there exists an analytic canonical change of variables

$$y = \Phi^{(M)}(x)$$

 $\Phi^{(M)}: B_s(r) \to B_s(3r)$

which puts (11) into the normal form

$$\dot{y} = \omega y + \mathcal{R}^{(M)}(y) + \mathcal{X}^{(M)}(y).$$
(12)

Theorem (Theorem cont.)

۲

Moreover there exists a constant $C = C_s$ such that:

$$\sup_{x\in B_s(r)}\|x-\Phi^{(M)}(x)\|_s\leq Cr^2$$

- $\mathcal{R}^{(M)}$ is at most of degree M + 2, is resonant, and has tame modulus
- the following bound holds

$$\|\mathcal{X}^{(M)}\|_{s,r} \leq Cr^{M+\frac{3}{2}}$$

▲圖 ▶ ▲ 国 ▶ ▲ 国 ▶

Normal Form Theorem Ideas

• In the homological equation

$$f_{\mathcal{K}_0}(y) = R_{\mathcal{K}_0}(y) - [X_{\chi}, \omega y](y)$$

$${\rm let}\ f_{K_0} = \tilde{f} + f^*$$

・ロン ・雪 ・ ・ ヨ ・ ・ ヨ ・ ・

Normal Form Theorem Ideas

• In the homological equation

$$f_{\mathcal{K}_0}(y) = R_{\mathcal{K}_0}(y) - [X_{\chi}, \omega y](y)$$

 $\text{let } f_{K_0} = \tilde{f} + f^*$

• f^* consists of terms, $f_{lpha,eta,m}y^lphaar{y}^eta\partial_{y_m}$ where

$$\sum_{|n_i|>N} |\alpha_{n_i}| + \sum_{|m_i|>N} |\beta_{m_i}| + \mathbb{1}_{\{|n|>N\}}(m) \leq 2$$

- \tilde{f} is small when $||y||_s$ is small due to Tame Modulus.
- We instead solve

$$f^*(y) = R_{\mathcal{K}_0}(y) - [X_{\chi}, \omega y](y)$$

(1日) (日) (日)

Theorem (Faou, Gauckler, Lubich 2013)

Let $\rho_0 > 0$ be such that $1 - 2\lambda\rho_0^2 > 0$, and let M > 1 be fixed arbitrarily. There exists $s_0 > 0$, $C \ge 1$ and a set of full measure \mathcal{P} in the interval $(0, \rho_0]$ such that for every $s \ge s_0$ and every $\rho \in \mathcal{P}$, there exists ε_0 such that for every $m \in \mathbb{Z}^d$ the following holds: if the initial data $u(\bullet, 0)$ are such that

$$\|u(ullet,0)\|_{L^2}=
ho$$
 and $\|e^{-im\cdotullet}u(ullet,0)-u_m(0)\|_{H^s}=arepsilon\leqarepsilon_0$

then the solution of (1) (with p = 1) with these initial data satisfies

$$\|e^{-im\cdot \bullet}u(\bullet,t)-u_m(t)\|_{H^s}\leq Carepsilon$$
 for $t\leq arepsilon^{-M}$

向下 イヨト イヨト

Structure of the cubic case

Let

$$H_c = \int_{\mathbb{T}} (|\partial_x u|^2 + |u|^4) \, dx$$

Theorem (Kappeler, Grebert 2014)

There exists a bi-analytic diffeomorphism $\Omega: H^1 \to H^1$ such that Ω introduces Birkhoff coordinates for NLS on H^1 . That is, on H^1 the transformed NLS Hamiltonian $H_c \circ \Omega^{-1}$ is a real-analytic function of the actions

$$I_n = \frac{|x_n|^2}{2}$$

for $n \in \mathbb{Z}$. Furthermore, $d_0\Omega$ is the Fourier transform.

伺下 イヨト イヨト

Theorem (W. 2014)

Let $L_0 > 0$ be such that $1 - 2p\lambda L_0^p > 0$, and let M > 1 be fixed arbitrarily. There exists $s_0 > 0$, $C \ge 1$ and a set of full measure \mathcal{P} in the interval $(0, L_0]$ such that for every $s \ge s_0$ and every $L \in \mathcal{P}$, there exists ε_0 such that for every $m \in \mathbb{Z}^d$ the following holds: if the initial data $u(\bullet, 0)$ are such that

$$\|u(ullet,0)\|_{L^2}^2=L$$
 and $\|e^{-im\cdotullet}u(ullet,0)-u_m(0)\|_{H^s}=arepsilon\leqarepsilon_0$

then the solution of (1) with these initial data satisfies

$$\|e^{-im\cdot \bullet}u(\bullet,t)-u_m(t)\|_{H^s}\leq Carepsilon$$
 for $t\leq arepsilon^{-M}$

同 ト イヨ ト イヨ ト

Proposition

The truncation of (12),

$$i\dot{y} = \omega y + \mathcal{R}^{(M)}(y)$$

can be decoupled in the following way:

$$i\partial_t \begin{pmatrix} y_{n_1} \\ \cdots \\ y_{n_k} \end{pmatrix} = \mathcal{M}_q \begin{pmatrix} y_{n_1} \\ \cdots \\ y_{n_k} \end{pmatrix}$$
(13)

where $q \ge 1$, $\{n_1, \ldots, n_k\} := \{n \in \mathbb{Z}^d : |n| = q\}$, $\mathcal{M}_q = \mathcal{M}_q(\omega, \{y_j\})$ is a self-adjoint matrix for all t.

▲圖▶ ★ 国▶ ★ 国▶

The form of the resonant terms depends entirely on two properties of the Hamiltonian:

- The Hamiltonian obeys the Conservation of Momentum law:
 - For any monomial, $f_{\alpha,\beta,m}y^{\alpha}\bar{y}^{\beta}\partial_{y_m}$, in the vector field, the indices satisfy

$$\sum \alpha_k k - \sum \beta_j j - m = 0$$

• $\{\omega_q\}_{q < N}$ is a linearly independent set

(日本) (日本) (日本)

Proposition

Suppose $y \in H^s$ satisfies (13), then

$$\partial_t \|y\|_s^2 = \partial_t \sum_{q \ge 1} \left(\sum_{|n_i|=q} |y_{n_i}|^2 \right) \langle q \rangle^{2s} = 0$$

- Infinite time result?
- Feasibility of the Floquet/Duhamel iteration
- KAM result

・ 母 と ・ ヨ と ・ ヨ と

- Obstacles
 - One parameter family of frequencies
 - Repeated frequencies
- May be able to overcome this: Bambusi, Berti, Magistrelli Degenerate KAM theory for PDEs

- D. Bambusi, B. Grébert, Birkhoff normal form for partial differential equations with tame modulus, Duke Math. J. 135 (2006), no. 3, 507–567.
- E. Faou, L. Gauckler, C. Lubich, Sobolev stability of plane wave solutions to the cubic nonlinear Schrödinger equation on a torus, Comm. Partial Differential Equations 38 (2013), no. 7, 1123–1140.
 - B. Grébert, *Birkhoff normal form and Hamiltonian PDEs*, Sémin. Cong. **15**, 1–46 (2007).

・ 同 ト ・ ヨ ト ・ ヨ ト …

Thank you for listening

・ロン ・回 と ・ ヨン ・ ヨン